# Characterization of the bacterial makeup and quantitative distribution in patients with suspected small intestine bacterial overgrowth (SIBO): A meta-analysis

Shaoying Nikki Lee PhD<sup>1</sup>, Jack Stylli BSc<sup>1</sup>, Collen Kelly PhD<sup>2</sup>, Nick Allan PhD<sup>3</sup>, Sharat Singh PhD<sup>1</sup>, Chris Wahl MD<sup>1</sup>, Emil Chuang MD<sup>1</sup>, and Mitchell Jones MD PhD<sup>1</sup> <sup>1</sup>Progenity, Inc. Ann Arbor, Michigan, United States; <sup>2</sup>Kelly Statistical Consulting, San Diego, California, United States; <sup>3</sup>StaarFish Medical Inc., Victoria, B.C., Canada

### Introduction

Small Intestine Bacterial Overgrowth (SIBO) is a clinical condition associated with abnormally high bacterial counts in the small intestine and clinical features such as diarrhea, constipation, abdominal pain, distension, and bloating. A meta-analysis of studies of endoscopic samples from patients with suspected SIBO was performed to estimate the distribution of bacterial colony forming units (CFU), and a review was performed to identify the bacterial populations in these patients.

## Methodology

A literature search was performed to find relevant studies using the following keywords: SIBO (or SBBO), culture aspirate, and CFU. Ten studies with data on patients with culture aspirates from the jejunum or duodenum were found. The CFU distribution was estimated using a log-spline smoothing technique in the statistical package R. In addition, a literature review was performed to identify the bacterial populations in jejunal aspirates of these patients.

| Study                    | Study population                                  | Ν   | Aspirate culture taken from      | Type of data                                                                                                                                                                       |
|--------------------------|---------------------------------------------------|-----|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Bardhan et al. 1992   | Adults with various gastrointestinal diseases     | 26  | Proximal small bowel             | All counts (continuous)                                                                                                                                                            |
| 2. Berthold et al. 2009  | Adults with suspected SBBO                        | 22  | Region of the ligament of Treitz | All counts (continuous)                                                                                                                                                            |
| 3. Corazza et al. 1990   | Adults with suspected SBBO                        | 30  | Jejunum                          | All counts (continuous)                                                                                                                                                            |
| 4. Ghoshal et al. 2014   | Adults with IBS                                   | 80  | Upper small bowel                | CFU<10 <sup>3</sup> , continuous for counts $\geq 10^3$                                                                                                                            |
| 5. Lewis et al. 1997     | Adults with suspected SBBO                        | 47  | Duodenum                         | CFU<10 <sup>3</sup> , continuous for counts $\geq$ 10 <sup>3</sup> , one count reported as <10 <sup>5</sup>                                                                        |
| 6. Riordan et al. 1995   | Adults with suspected SBBO                        | 15  | Duodenum                         | CFU<10 <sup>3</sup> , continuous for counts $\geq$ 10 <sup>3</sup> ,<br>one count reported as <10 <sup>5</sup> , one count<br>reported between 10 <sup>4</sup> and 10 <sup>5</sup> |
| 7. Riordan et al. 2000   | "Hydrogen producer"<br>Adults with suspected SBBO | 20  | Proximal small intestine         | CFU<10 <sup>3</sup> , 10 <sup>3</sup> ≤CFU<10 <sup>5</sup> ,CFU≥10 <sup>5</sup>                                                                                                    |
| 8. Erdogan et al. 2015   | Adults with suspected SBBO                        | 139 | Duodenum                         | CFU<10 <sup>3</sup> , 10 <sup>3</sup> ≤CFU<10 <sup>5</sup> ,CFU≥10 <sup>5</sup>                                                                                                    |
| 9. Jacobs et al. 2013    | Adults with suspected SBBO                        | 150 | Duodenum                         | $CFU < 5x10^3$ , $5x10^3 \le CFU < 10^4$ ,<br>$10^4 \le CFU < 5x10^4$ , $5x10^4 \le CFU < 10^5$ , $CFU < 10^5$                                                                     |
| 10. Posserud et al. 2007 | Adults with IBS                                   | 162 | Jejunum                          | CFU<5 x 10 <sup>3</sup> , $5x10^3 \le CFU < 10^4$ ,<br>$10^4 \le CFU < 5x10^4$ , $5x10^4 \le CFU < 10^5$ , $CFU \ge 10^5$                                                          |

**Table 1.** Summary of the studies used to estimate the distribution of bacterial CFU/mL, separated into groups by the type of CFU data presented.

#### Results

 

 Table 1 presents a summary of the studies used in the meta 
analysis, with the number and type of subjects, and the region the culture aspirate sample was taken from, separated by the type of CFU data presented. Figure 1 presents a histogram of the estimated CFU distribution using studies 1-5 with distinct CFU counts (raw viable plate counts, with total aerobic plus anaerobic counts); the remaining studies (6-10) presented CFU counts in categories. The spike at zero reflects that approximately 26% of patients had sterile cultures.

Sensitivity analyses using studies 1-7 and all studies were done, which yielded similar estimated distributions to Figure 1, particularly in terms of the proportion of subjects with CFU counts between 10<sup>4</sup> and 10<sup>6</sup>. The proportion of subjects in the tails of the distributions (either with sterile samples or with CFU counts greater than 10<sup>10</sup>) had larger variations between the three fitted distributions presumably due to differences in counting methodologies. Table 2 summarizes the top bacterial species cultured and typed from jejunal aspirates as well as the studies used to describe the strain list.

| Table 2. Summary of the top bacterial species cultured and identified from j | jej | jui |
|------------------------------------------------------------------------------|-----|-----|
|------------------------------------------------------------------------------|-----|-----|

| Organism               | Gram reaction | References                                                                                               |
|------------------------|---------------|----------------------------------------------------------------------------------------------------------|
| Escherichia coli       | NEG           | Pistiki et al. 2014.; Bouhnik et al. 1999.; Posseru<br>Ghoshal et al. 2014.; Pyleris et al. 2012.; Rumes |
| Staphylococcus spp.    | POS           | Pistiki et al. 2014.; Bouhnik et al. 1999.; Posser<br>Ghoshal et al. 2014.; Pyleris et al. 2012.; Rumes  |
| Klebsiella pneumoniae  | NEG           | Pistiki et al. 2014.; Bouhnik et al. 1999.; Posser<br>Ghoshal et al. 2014.; Pyleris et al. 2012.; Rume   |
| Pseudomona aeruginosa  | NEG           | Pistiki et al. 2014.; Giamarellos-Bourboulis et a                                                        |
| Clostridium spp.       | POS           | Bouhnik et al. 1999.; Posserud et al. 2007.; Gia<br>Riordan et al. 2000.; Berthold et al. 2009.; Kerc    |
| Bacteroides spp.       | NEG           | Bouhnik et al. 1999.; Erdogan et al. 2015.; Rum                                                          |
| Enterobacter aerogenes | NEG           | Pistiki et al. 2014.; Posserud et al. 2007.; Erdog                                                       |
| Streptococcus spp.     | POS           | Bouhnik et al. 1999.; Erdogan et al. 2015.; Gho                                                          |
| Enterococcus faecalis  | POS           | Pistiki et al. 2014.; Posserud et al. 2007.; Erdog                                                       |
| Proteus mirabilis      | NEG           | Bouhnik et al. 1999.; Giamarellos-Bourboulis et                                                          |

NEG = Gram-negative, POS = Gram-positive



**Figure 1**. Estimated distribution of bacterial CFU in patients with suspected SIBO using the five articles with complete data.



ud et al. 2007.; Giamarellos-Bourboulis et al. 2015.; Erdogan et al. 2015.; ssen et al. 1985.; Riordan et al. 2000.; Berthold et al. 2009.; Kerckhoffs et al. 2015. erud et al. 2007.; Giamarellos-Bourboulis et al. 2015.; Erdogan et al. 2015.; ssen et al. 1985.; Riordan et al. 2000.; Berthold et al. 2009.; Kerckhoffs et al. 2015. erud et al. 2007.; Giamarellos-Bourboulis et al. 2015.; Erdogan et al. 2015.; essen et al. 1985.

al. 2015.; Erdogan et al. 2015.; Pyleris et al. 2012.; Riordan et al. 2000.

amarellos-Bourboulis et al. 2015.; Erdogan et al. 2015.; Rumessen et al. 1985.; ckhoffs et al. 2015.

nessen et al. 1985.; Riordan et al. 2000.; Kerckhoffs et al. 2015.

gan et al. 2015.; Pyleris et al. 2012.

oshal et al. 2014.

an et al. 2015.; Pyleris et al. 2012.; Berthold et al. 2009.; Kerckhoffs et al. 2015.

al. 2015.; Pyleris et al. 2012.; Rumessen et al. 1985.

#### Conclusions

- Using the standard diagnostic threshold of 10<sup>5</sup> CFU, only 24% of patients with suspected SIBO would test positive; lowering the threshold to 10<sup>4</sup> CFU yields 33% of patients with suspected SIBO testing positive.
- As expected, bacterial culture identification was unable to clearly distinguish a single contributing organism.
- Limitations to this work include variability in sampling regions, contamination, difficulty culturing and counting bacteria, lack of standardization in procedures and reproducibility.
- Given these limitations, there is consensus that novel tools are needed for evaluating patients with suspected SIBO.